Search results for "braid group"

showing 10 items of 24 documents

The proof of Birman’s conjecture on singular braid monoids

2003

Let B_n be the Artin braid group on n strings with standard generators sigma_1, ..., sigma_{n-1}, and let SB_n be the singular braid monoid with generators sigma_1^{+-1}, ..., sigma_{n-1}^{+-1}, tau_1, ..., tau_{n-1}. The desingularization map is the multiplicative homomorphism eta: SB_n --> Z[B_n] defined by eta(sigma_i^{+-1}) =_i^{+-1} and eta(tau_i) = sigma_i - sigma_i^{-1}, for 1 <= i <= n-1. The purpose of the present paper is to prove Birman's conjecture, namely, that the desingularization map eta is injective.

20F36 57M25. 57M27[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]Monoid[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]Braid group20F36Group Theory (math.GR)01 natural sciencesBirman's conjecture[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics - Geometric TopologyMathematics::Group Theory57M25. 57M27Mathematics::Category Theory[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsBraid0101 mathematics[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR][MATH.MATH-GT] Mathematics [math]/Geometric Topology [math.GT]MathematicsConjecturedesingularization010102 general mathematicsMultiplicative functionSigmaGeometric Topology (math.GT)singular braidsInjective function010101 applied mathematicsHomomorphismGeometry and TopologyMathematics - Group TheoryGeometry & Topology
researchProduct

Finite Braid Groups for the SU(2) Knizhnik Zamolodchikov Equation

1995

We consider the monodromy representations of the mapping class group B 4 of the 2-sphere with 4 punctures acting in the solutions space of the zu(2) Knizhnik-Zamolodchikov equation [3] (note that the monodromy representations of the braid group have a more general geometric definition [4]).

AlgebraHigh Energy Physics::TheoryMonodromyMathematics::Quantum AlgebraBraid groupSpace (mathematics)Special unitary groupMapping class groupMathematicsKnizhnik–Zamolodchikov equations
researchProduct

Generalized Braid Groups and Mapping Class Gropus

1997

Given a chord system of D2, we associate a generalized braid group, a surface and a homomorphism from this braid group to the mapping class group of the surface. We disprove a conjecture stated in an article by Perron and Vannier by showing that generally this homomorphism is not injective.

CombinatoricsAlgebra and Number TheoryConjectureBraid groupLawrence–Krammer representationHomomorphismBraid theoryInjective functionMapping class groupGraphMathematicsJournal of Knot Theory and Its Ramifications
researchProduct

The conjugacy problem in subgroups of right-angled Artin groups

2009

We prove that the conjugacy problem in right-angled Artin groups (RAAGs), as well as in a large and natural class of subgroups of RAAGs, can be solved in linear-time. This class of subgroups contains, for instance, all graph braid groups (i.e. fundamental groups of configuration spaces of points in graphs), many hyperbolic groups, and it coincides with the class of fundamental groups of ``special cube complexes'' studied independently by Haglund and Wise.

CombinatoricsMathematics::Group TheoryConjugacy problemBraid groupGeometry and TopologyNatural classGraphMathematicsJournal of Topology
researchProduct

Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups

1999

It is known that a number of algebraic properties of the braid groups extend to arbitrary finite Coxeter-type Artin groups. Here we show how to extend the results to more general groups that we call Garside groups. Define a Gaussian monoid to be a finitely generated cancellative monoid where the expressions of a given element have bounded lengths, and where left and right lowest common multiples exist. A Garside monoid is a Gaussian monoid in which the left and right lowest common multiples satisfy an additional symmetry condition. A Gaussian group is the group of fractions of a Gaussian monoid, and a Garside group is the group of fractions of a Garside monoid. Braid groups and, more genera…

CombinatoricsMonoidMathematics::Group TheoryCoxeter graphGeneral MathematicsArtin L-functionBraid groupArtin groupArtin reciprocity lawWord problem (mathematics)AutomorphismMathematicsProceedings of the London Mathematical Society
researchProduct

Conjugacy problem for braid groups and Garside groups

2003

We present a new algorithm to solve the conjugacy problem in Artin braid groups, which is faster than the one presented by Birman, Ko and Lee. This algorithm can be applied not only to braid groups, but to all Garside groups (which include finite type Artin groups and torus knot groups among others).

Conjugacy problemBraid group20F36Geometric topologyGarside groupsGroup Theory (math.GR)0102 computer and information sciencesAlgebraic topology01 natural sciencesTorus knotCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryMathematics::Quantum AlgebraFOS: MathematicsAlgebraic Topology (math.AT)Mathematics - Algebraic Topology0101 mathematics20F36; 20F10MathematicsSmall Gaussian groupsAlgebra and Number Theory010102 general mathematicsConjugacy problemBraid groupsGeometric Topology (math.GT)Braid theoryMathematics::Geometric TopologyArtin groups010201 computation theory & mathematicsArtin group20F10Mathematics - Group TheoryGroup theory
researchProduct

Irreducible components of Hurwitz spaces parameterizing Galois coverings of curves of positive genus

2014

Let Y be a smooth, projective, irreducible complex curve. A G-covering p : C → Y is a Galois covering, where C is a smooth, projective, irreducible curve and an isomorphism G ∼ −→ Aut(C/Y ) is fixed. Two G-coverings are equivalent if there is a G-equivariant isomorphism between them. We are concerned with the Hurwitz spaces H n (Y ) and H G n (Y, y0). The first one parameterizes Gequivalence classes of G-coverings of Y branched in n points. The second one, given a point y0 ∈ Y , parameterizes G-equivalence classes of pairs [p : C → Y, z0], where p : C → Y is a G-covering unramified at y0 and z0 ∈ p (y0). When G = Sd one can equivalently consider coverings f : X → Y of degree d with full mon…

Discrete mathematicsHurwitz quaternionHurwitz space Galois covering Braid groupGalois cohomologyInverse Galois problemGeneral MathematicsGalois groupSplitting of prime ideals in Galois extensionsEmbedding problemCombinatoricsHurwitz's automorphisms theoremGalois extensionSettore MAT/03 - GeometriaMathematics
researchProduct

Automorphism groups of some affine and finite type Artin groups

2004

We observe that, for fixed n ≥ 3, each of the Artin groups of finite type An, Bn = Cn, and affine type ˜ An−1 and ˜ Cn−1 is a central extension of a finite index subgroup of the mapping class group of the (n + 2)-punctured sphere. (The centre is trivial in the affine case and infinite cyclic in the finite type cases). Using results of Ivanov and Korkmaz on abstract commensurators of surface mapping class groups we are able to determine the automorphism groups of each member of these four infinite families of Artin groups. A rank n Coxeter matrix is a symmetric n × n matrix M with integer entries mij ∈ N ∪ {∞} where mij ≥ 2 for ij, and mii = 1 for all 1 ≤ i ≤ n. Given any rank n Coxeter matr…

Discrete mathematics[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General Mathematics010102 general mathematicsCoxeter groupBraid group20F36Group Theory (math.GR)Automorphism01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]ConductorCombinatoricsMathematics::Group TheoryGroup of Lie typeSymmetric group0103 physical sciencesFOS: MathematicsRank (graph theory)Artin group010307 mathematical physics0101 mathematicsMathematics - Group Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]Mathematics
researchProduct

A cubic defining algebra for the Links–Gould polynomial

2013

Abstract We define a finite-dimensional cubic quotient of the group algebra of the braid group, endowed with a (essentially unique) Markov trace which affords the Links–Gould invariant of knots and links. We investigate several of its properties, and state several conjectures about its structure.

Essentially uniqueAlgebraMarkov chainGeneral MathematicsBraid groupGroup algebraBraid theoryInvariant (mathematics)Mathematics::Geometric TopologyQuotientMathematicsAdvances in Mathematics
researchProduct

Hurwitz spaces of Galois coverings of P^1, whose Galois groups are Weyl groups

2006

We prove the irreducibility of the Hurwitz spaces which parametrize Galois coverings of P^1 whose Galois group is an arbitrary Weyl group and the local monodromies are reflections. This generalizes a classical theorem due to Clebsch and Hurwitz.

Hurwitz space Weyl group Braid group
researchProduct